去硫淨化法

中華民國 101 年 12 月 26 日環署檢字第 1010118407 號公告 自中華民國 102 年 3 月 31 日生效 NIEA M186.01C

一、方法概要

須淨化去硫之樣品與銅或四丁基亞硫酸銨(Tetrabutyl-ammonium (TBA)Sulfite)混合振盪後,從硫淨化溶液中分離出萃取物。

二、適用範圍

- (一)硫常會存在於許多底泥樣品內(不同區域有其特定的種類)、海 洋藻類、事業廢棄物等,硫在許多溶劑的溶解性很類似於有機氣 和有機磷農藥。因此,當進行萃取及淨化時常會受到硫的干擾。 通常以矽酸鎂管柱(Florisil)淨化時硫可於第一部分沖提即完全沖 提出。
- (二)當氣相層析儀的偵測器為電子捕捉偵測器(ECD)、測硫或測磷型式之火焰光度偵測器(FPD)及以測硫型式之電解導電感應偵測器(Coulson Electrolytic Conductivity Detector)時,將可獲得相當明顯的硫訊號。若在正常情況下以氣相層析儀分析農藥時,硫的干擾會完全遮蓋住從溶劑至阿特靈(Aldrin)的滯留時間範圍。
- (三)在本方法中,將詳細介紹二種硫的淨化技術: (1)使用銅粒; (2)使用四丁基亞硫酸銨(TBA-Sulfite)。四丁基亞硫酸銨對 大多數的農藥和有機化合物的分解程度最小,而使用銅粒可能造 成有機磷及某些有機氯農藥的分解。

三、干擾

在使用銅去除硫時,必須使用具有閃亮外觀的銅粒,銅粒表面若有氧化物必須使用稀硝酸去除,並小心移去所有微量的酸,以避免一些分析物的分解。

四、設備

- (一)機械振盪或混合器:Vortex Genie 或同級品。
- (二)吸管:可丟棄式。
- (三)離心管:有刻度,12 mL。
- (四)玻璃瓶或樣品瓶(vials):10 mL 和 50 mL,有鐵氟龍襯墊的螺 旋瓶蓋或夾壓式密封蓋(crimp tops)。
- (五)濃縮裝置:可使用 K.-D. 濃縮裝置、減壓濃縮裝置、加熱減壓吹 氮濃縮定量裝置、振盪減壓濃縮裝置、離心減壓濃縮裝置;或其 他相似功能之裝置。

五、試劑

- (一) 所有分析用的試劑必須是試藥級。
- (二)試劑水:不含有機物之去離子水。
- (三)稀硝酸:試藥級濃硝酸經適當稀釋。
- (四)溶劑
 - 1.丙酮, CH₃COCH₃: 殘量級或同級品。
 - 2.己烷, C₆H₁₄: 殘量級或同級品。
 - 3.2-丙醇, CH₃CH(OH)CH₃: 殘量級或同級品。
- (五)銅粒:使用稀硝酸處理以去除氧化物,再用不含有機物之試劑水 清洗以洗淨所有殘留的酸,隨後再用丙酮清洗並於氮氣吹氣之下 乾燥。
- (六)四丁基亞硫酸銨(TBA-Sulfite)試劑
 - 1.四丁基硫酸氫銨, [CH₃(CH₂)₃]₄NHSO₄。
 - 2.亞硫酸鈉, Na_2SO_3 。
 - 3.試劑的製備:將 3.39 g 四丁基硫酸氫銨溶解於 100 mL 不含有機物之試劑水中,用 20 mL 己烷萃取三次以除去不純物,丟棄己烷萃液,並加入 25 g 亞硫酸鈉至水溶液中。將此四丁基亞硫酸銨飽合溶液儲存於棕色瓶內,並用有鐵氟龍襯墊的螺旋瓶蓋旋緊。此溶液在室溫下可儲存至少一個月。

六、採樣與保存

參考各相關檢測方法。

七、步驟

(一)使用銅去除硫

- 1. 使用減壓濃縮裝置濃縮樣品至 1.0 mL 或一已知體積(註 1)。
- 2.當硫的濃度足以發生結晶時,將之離心以沈降晶體,而後使用可丟棄式的吸管小心吸取樣品萃液,並留下過剩的硫於 K-D 管中。將 1.0 mL 的樣品萃取液轉移至有刻度的離心管中。
- 3.加入約2g 的乾淨銅粒於離心管內(0.5 mL 刻劃處)在機械振 盪器上混合至少1分鐘,使其產生相分離。
- 4.使用可丟棄式的吸管小心吸取樣品萃液以與銅粒分離(註 2),並 將萃液移入乾淨樣品瓶內。萃液的體積應該仍維持 1 mL。
- 5.若銅粒去硫過程仍有黑色氧化物,須再加入新的銅粒,重複前述去硫過程,直到銅粒不再形成黑色氧化物為止。
- (二)使用四丁基亞硫酸銨(TBA-Sulfite)去除硫
 - 1.使用 K-D 裝置或減壓濃縮裝置濃縮樣品至 1.0 mL 或一已知體 積。
 - 2.將 1.0 mL 的樣品萃液轉移至 50 mL 乾淨的附有鐵氟龍襯墊螺 旋瓶蓋的玻璃瓶或樣品瓶中。用 1 mL 的已烷清洗濃縮管,將 洗液倒入 50 mL 的玻璃瓶中。
 - 3.加入 1.0 mL 四丁基亞硫酸銨 (TBA-Sulfite) 試劑與 2 mL 2-丙醇, 旋緊瓶蓋, 並搖盪至少 1 分鐘。若樣品是無色或其起始顏色不變, 並且可觀察到透明晶體 (亞硫酸鈉沈澱物),則表示亞硫酸鈉足夠。若亞硫酸鈉沈澱物消失,則須再加 0.100 g 亞硫酸鈉晶體直到在重複搖動後都會有固體殘留。
 - 4.加入 5 mL 不含有機物之試劑水並搖盪至少 1 分鐘後, 靜置樣品 5 至 10 分鐘。將己烷層(上層)轉移至濃縮管,將萃取物濃縮至 1 mL 左右。記錄最後萃液之實際體積。
 - 5.以適當方法分析所淨化的萃液。

八、結果處理

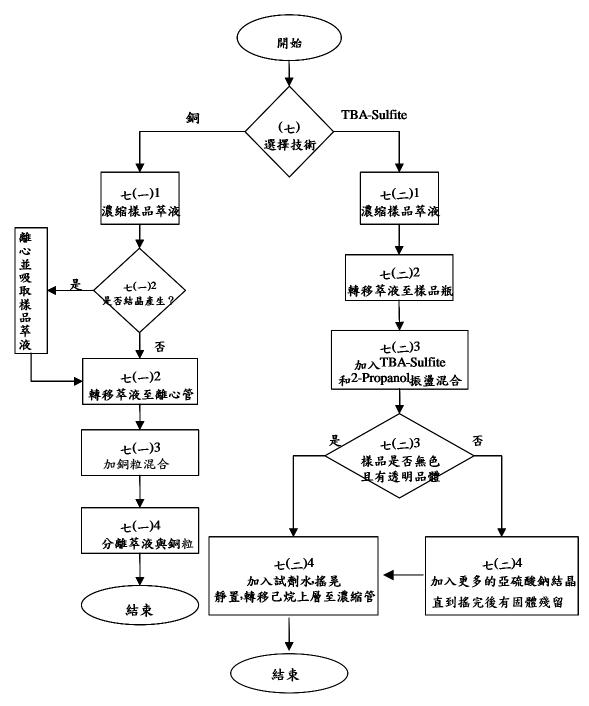
略

九、品質管制

(一)以本方法來淨化樣品萃液時,其品質管制樣品(例如:空白、重複、添加)也必須以此方法淨化處理。

(二)分析者以儲備標準溶液於每一個不同之分析方法(GC、GC/MS、HPLC)校正儀器時,建議此儲備標準溶液亦經過淨化步驟,以確保層析圖譜分離之正確性與所使用試劑中不受不純物質之干擾。

十、精密度與準確度


表一顯示出使用銅去硫後某些有機氯化合物及農藥的回收率。 十一、參考資料

- () U.S.EPA, Sulfur Cleanup, Test Methods for Evaluating Solid Waste. Method 3660B, 1996.
- (=) Goerlitz, D.F. and L.M. Law, Bulletin for Environmental Contamination and Toxicology, 6, 9, 1971.
- (三) U.S.EPA Contract Laboratory Program, Statement of Work for Organic Analysis, Revision, 1985.
- 註1:當溶劑體積少於 1.0 mL 時,半揮發性分析物可能會逸失。
- 註2:分離的目的在於避免造成農藥更進一步的分解。

表一 銅處理後有機氯化合物及農藥回收率

農藥	回收率百分比 ^a
多氯聯苯 1254(Aroclor 1254)	104. 26
靈丹(Lindane)	94.83
飛佈達(Heptachlor)	5. 39
阿特靈(Aldrin)	93. 29
環氧飛佈達(Heptachlor epoxide)	96. 55
滴滴依(DDE)	102.91
滴滴涕(DDT)	85. 10
蟲必死(BHC)	98. 08
地特靈(Dieldrin)	94. 90
安特靈(Endrin)	89. 26
克氯苯(Chlorobenzilate)	0.00
馬拉松(Malathion)	0.00
大力松(Diazinon)	0.00
巴拉松(Parathion)	0.00
愛殺松(Ethion)	0.00
Trithion	0.00

^a除了阿特靈和蟲必死外,所有化合物之回收百分比均為二次分析平均所得之結果;阿特靈為四次及三次(銅)測定之平均結果;而蟲必死只測一次分析結果(銅)。

去硫淨化流程圖